Wheat growing guide

Suggested types:

Starter Fertilization

Top dressing

1. Introduction

Wheat (Triticum spp.) is one of the most important crops worldwide and has been a staple in human nutrition for thousands of years. Its cultivation covers extensive agricultural areas, significantly contributing to food security and the economies of many countries.

Nutritional Value:
Wheat is rich in carbohydrates, proteins, and dietary fiber, providing vitamins (mainly B-complex) and minerals such as iron, magnesium, and zinc.

Economic Importance:
In Greece, wheat holds a significant place in agriculture, with large areas cultivated in lowland regions. It is also a primary ingredient in the production of bakery products, pasta, and other foods, supporting these industries.

Industrial and Feed Uses:
Beyond human nutrition, wheat is used in the production of animal feed, starch, alcoholic beverages, and various industrial products.

Διατροφική αξία: Το σιτάρι είναι πλούσιο σε υδατάνθρακες, πρωτεΐνες και φυτικές ίνες, ενώ παρέχει βιταμίνες (κυρίως του συμπλέγματος Β) και ανόργανα στοιχεία, όπως σίδηρο, μαγνήσιο και ψευδάργυρο.

Οικονομική σημασία: Στην Ελλάδα, το σιτάρι κατέχει σημαντική θέση στη γεωργία, με μεγάλες εκτάσεις να καλλιεργούνται σε πεδινές περιοχές. Παράλληλα, αποτελεί κύριο συστατικό για την παραγωγή αρτοσκευασμάτων, ζυμαρικών και άλλων τροφίμων, στηρίζοντας έτσι αυτή τη βιομηχανία.

Βιομηχανική και ζωοτροφική χρήση: Εκτός από τη διατροφή, το σιτάρι χρησιμοποιείται για την παραγωγή ζωοτροφών, αμύλου, αλκοολούχων ποτών και άλλων βιομηχανικών προϊόντων.

Διατροφική αξία: Το σιτάρι είναι πλούσιο σε υδατάνθρακες, πρωτεΐνες και φυτικές ίνες, ενώ παρέχει βιταμίνες (κυρίως του συμπλέγματος Β) και ανόργανα στοιχεία, όπως σίδηρο, μαγνήσιο και ψευδάργυρο.
Οικονομική σημασία: Στην Ελλάδα, το σιτάρι κατέχει σημαντική θέση στη γεωργία, με μεγάλες εκτάσεις να καλλιεργούνται σε πεδινές περιοχές. Παράλληλα, αποτελεί κύριο συστατικό για την παραγωγή αρτοσκευασμάτων, ζυμαρικών και άλλων τροφίμων, στηρίζοντας έτσι αυτή τη βιομηχανία.
Βιομηχανική και ζωοτροφική χρήση: Εκτός από τη διατροφή, το σιτάρι χρησιμοποιείται για την παραγωγή ζωοτροφών, αμύλου, αλκοολούχων ποτών και άλλων βιομηχανικών προϊόντων.

2. Botanical and Physiological Characteristics

Wheat (Triticum spp.) belongs to the Poaceae family and is characterized by the following morphological features:

Root System:
Fibrous and shallow, developing within the top 30–60 cm of soil.
Absorbs nutrients and water mainly from the upper soil layers.

Stem:
Composed of nodes and internodes.
Hollow internally (cylindrical structure).
Bears leaves and inflorescences.

Leaves:
Alternately arranged on stem nodes.
Include blade, sheath, ligule, and auricles.
Involved in photosynthesis and energy production.

Flowers:
Grouped in spikes.
Each spike consists of spikelets containing 3–5 flowers.
Pollination is primarily self-pollination.

Fruit (Seed):
The grain (wheat kernel) contains the embryo, endosperm, and bran.
Rich in starch and proteins, it is a fundamental food product.


Nutritional Value:
Wheat is rich in carbohydrates, proteins, and dietary fiber, providing vitamins (mainly B-complex) and minerals such as iron, magnesium, and zinc.

Economic Importance:
In Greece, wheat holds a significant place in agriculture, cultivated extensively in lowland areas. It is a key ingredient for producing bakery products, pasta, and other foods, supporting this industry.

Industrial and Feed Uses:
Besides human consumption, wheat is used for animal feed, starch production, alcoholic beverages, and other industrial products.

Wheat growth is divided into the following stages:

Sowing and Germination:
The seed absorbs water and germination begins.
Emergence of roots and the first leaf.

Tillering:
Formation of lateral shoots (tillers).
A critical stage for future plant density.

Stem Elongation:
Rapid height growth.
Formation of the main spike.

Flowering:
Opening of flowers and fertilization.
Beginning of grain development.

Grain Filling:
Accumulation of starch and proteins in the grains.
Important for quality and yield.

Maturity:
Grains harden and moisture decreases to 12–14%.
Ready for harvest.

Climate:
Temperature:
Ideal range: 10–25°C.
Tolerant to low temperatures during germination (down to –10°C).
High temperatures (>30°C) reduce yield.

Humidity:
Requires 400–600 mm of annual rainfall.
Sensitive to drought during critical stages (flowering and grain filling).

Soil:
Soil type:
Prefers fertile, deep, and well-drained soils.
pH: 6.0–7.5 (slightly acidic to neutral).
Good organic matter content.

Soil management:
Careful preparation needed to ensure good structure and aeration.
Base fertilization is necessary to cover initial nutrient needs.

3. Soil preparation and sowing

Proper soil preparation is essential for optimal wheat growth, as it affects germination, root system development and plant nutrition.

Creation of a well-aerated soil profile.
Enhancement of drainage.
Elimination of weeds and incorporation of plant residues from previous crops.
Uniform distribution of fertilizers to support initial growth.

Deep Tillage:
Performed in summer or early autumn, at a depth of 25–35 cm.
Its purpose is to break up hard soil layers and improve water infiltration.
Helps reduce weed and insect populations.

Secondary Cultivations (Rototilling):
Applied before sowing to create a loose soil structure.
Aid in uniform incorporation of fertilizers and organic matter.

Soil Leveling (optional):
Ensures uniform water distribution during irrigation.
Prevents formation of areas with excessive moisture.

Soil Analysis:
Samples are taken from 0–30 cm and 30–60 cm depths to determine pH, organic matter, salinity, and nutrient levels.
Laboratory methods used include Olsen for phosphorus, Kjeldahl for nitrogen, among others.

Improvement of Soil Characteristics:
pH Corrections: Application of lime (CaCO₃) for acidic soils or gypsum (CaSO₄) for alkaline soils.
Organic Matter: Enrichment with compost or well-rotted manure to improve soil structure and water retention capacity.
Salinity Management: Leaching with fresh water and gypsum addition to break down salts.

Optimal Sowing Time:
Depends on regional climate and wheat type (soft or hard).

Winter Varieties (Greece):
Sown in autumn (October–November).
Require low temperatures (vernalization) to flower.

Spring Varieties:
Sown in spring (February–March).
Suitable for mild winter regions.

Temperature Requirements for Sowing:
Minimum germination temperature: 3–4°C.
Optimal growth temperature: 15–20°C.
Risk temperature (>30°C): Yield reduction due to heat stress.

  • Seeding Density:
    12–15 kg seed/hectare for soft wheat.
    15–18 kg seed/hectare for hard wheat.
    Amount adjusted based on seed size and germination rate (≥95%).

    Sowing Depth:
    3–5 cm in light soils.
    2–3 cm in heavy soils.
    Avoid sowing deeper than 6 cm due to reduced germination.

  1. Row Planting (with seed drills):
    Ensures uniform plant distribution.
    Facilitates easy weed and fertilizer management.

    Broadcast Seeding (manual or mechanical):
    Used in small areas.
    Issues with uneven density and plant competition.

Seed Selection:
Use certified seeds for high germination rates.

Seed Treatment:
Protect against fungal diseases (e.g., Fusarium) with seed coating.

Soaking in Growth Stimulators:
Use products that enhance root development and germination.

4. Lubrication

Fertilization is a key factor in optimizing wheat growth and yield. Its primary roles include:

Nutrient Supply:
Ensures the fulfillment of the plants’ nutrient requirements throughout different growth stages.

Increased Productivity:
Contributes to maximizing yield both quantitatively and qualitatively.

Improved Grain Quality:
Enhances protein, gluten, and amino acid content essential for bread and pasta production.

Stress Resistance:
Supports tolerance to diseases, weeds, and environmental stresses such as drought and temperature fluctuations.

Soil Fertility Restoration:
Restores nutrient balance after intensive cropping or monoculture.

Goals of a Successful Wheat Fertilization Strategy Include:

Optimal Growth and Yield:
Provide sufficient nitrogen (N) for vigorous vegetative growth.
Use phosphorus (P) to strengthen the root system.
Add potassium (K) to improve resistance and grain quality.

Improvement of Production Quality:
Increase protein content.
Enhance plant disease resistance through balanced nutrition.

Reduction of Environmental Impact:
Apply rational doses to prevent nitrate pollution and fertilizer leaching.
Use urease inhibitor-treated fertilizers.

Input Efficiency:
Increase economic sustainability through targeted nutrient use.
Reduce unnecessary applications to save costs and protect the environment.

The quantity, quality, and type of fertilizers required depend on various factors:

Soil Analysis:
Determination of available nutrients through laboratory testing.
Assessment of pH, electrical conductivity (EC), and organic matter.
Identification of nutrient deficiencies or excesses.

Climatic Conditions:
Areas with low rainfall require smaller nutrient doses but more frequent applications.
Warm regions increase evaporation, necessitating careful management of water-soluble fertilizers.

Soil Type:
Light soils (sandy) have low nutrient retention capacity, requiring frequent applications.
Heavy soils (clay) need deeper fertilizer incorporation to prevent leaching.

Wheat Variety:
High-yielding varieties have increased nitrogen and phosphorus requirements.
Older or lower-yielding varieties require less nutrition.

Growth Stage:
Phosphorus and potassium are needed during early growth for root development.
Nitrogen is critical during tillering and flowering for vegetative growth.
Micronutrients, such as zinc, are important during grain filling for quality.

Previous Crop:
Soils following nitrogen-fixing crops (e.g., legumes) may require less nitrogen.
In contrast, intensive crops (e.g., corn) may need higher nutrient doses.

Irrigation Management:
Irrigation use requires careful fertilization planning to avoid nutrient loss through leaching.

Macronutrients (Nitrogen, Phosphorus, and Potassium) are essential for proper wheat development. They are fundamental components of proteins, enzymes, and plant structural tissues.


Nitrogen (N)

Role:

  • Involved in the synthesis of proteins, amino acids, and chlorophyll.

  • Enhances vegetative growth, leaf surface area, and photosynthesis.

  • Improves grain quality by increasing gluten content.

Requirements:

  • During germination: 3–5 kg/acre for rapid establishment.

  • During tillering: 7–10 kg/acre for new shoot growth.

  • During flowering and grain filling: 6–8 kg/acre to boost yield.

Deficiency Symptoms:

  • Yellow leaves (chlorosis).

  • Stunted growth and small grains.

Excess Nitrogen:

  • Excessive vegetative growth with weak shoots, increased susceptibility to diseases, lodging, and delayed maturity.


Phosphorus (P)

Role:

  • Important for root development and flowering.

  • Aids energy transfer via ATP and enzymatic reactions.

  • Supports maturation and DNA/RNA synthesis.

Requirements:

  • At sowing: 6–10 kg/acre for root development.

  • During grain filling: 3–5 kg/acre for nutrient transport.

Deficiency Symptoms:

  • Delayed growth and small roots.

  • Red or purple leaf coloration due to anthocyanin accumulation.

Excess Phosphorus:

  • Reduced uptake of zinc and iron, causing deficiencies.


Potassium (K)

Role:

  • Regulates osmotic pressure and water transport.

  • Enhances disease and drought resistance.

  • Supports strong stem growth and photosynthesis.

Requirements:

  • At sowing: 6–8 kg/acre to strengthen plant tissues.

  • During grain development: 3–5 kg/acre to improve grain quality.

Deficiency Symptoms:

  • Brown or necrotic leaf edges.

  • Weak stems and increased lodging.

Excess Potassium:

  • Reduces magnesium and calcium uptake, causing imbalances.

Calcium (Ca):

Important for cell wall structure and pH regulation.
Requirements: 1–3 kg/acre.
Deficiency: Leaf deformities and delayed root development.


Magnesium (Mg):

Central component of chlorophyll, essential for photosynthesis.
Requirements: 2–3 kg/acre.
Deficiency: Yellow stripes between leaf veins (interveinal chlorosis).


Sulfur (S):

Involved in synthesis of amino acids, proteins, and antioxidants.
Requirements: 2–4 kg/acre.
Deficiency: Chlorosis similar to nitrogen deficiency but affects young leaves.

Iron (Fe):
Essential for respiration and chlorophyll synthesis.
Deficiency: Chlorosis in young leaves.


Zinc (Zn):
Key for synthesis of growth hormones and proteins.
Deficiency: Stunted growth, small leaves, and shortened internodes.


Boron (B):
Enhances pollen and seed development.
Deficiency: Deformations and necrosis at shoot tips.


Copper (Cu):
Necessary for enzyme activity and photosynthesis.
Deficiency: Leaf curling and white leaf margins.


Manganese (Mn):
Activates enzymes involved in photosynthesis and metabolism.
Deficiency: Brown spots on leaves.

Βασική Λίπανση
Εφαρμόζεται κατά τη σπορά για να εξασφαλίσει θρεπτικά στοιχεία απαραίτητα για την αρχική ανάπτυξη του φυτού.

Στόχοι της Βασικής Λίπανσης:

  • Ενίσχυση της βλαστικής ανάπτυξης και του ριζικού συστήματος.

  • Κάλυψη αναγκών σε φώσφορο (P) και κάλιο (K) στα πρώτα στάδια.

  • Δημιουργία κατάλληλου περιβάλλοντος για εγκατάσταση των φυτών.

Προτεινόμενες Δόσεις:

Θρεπτικό ΣτοιχείοΔόση (κιλά/στρέμμα)Μορφή Λιπάσματος
Άζωτο (N)8-10Νιτρικό ή αμμωνιακό άζωτο (π.χ. 21-0-0)
Φώσφορος (P₂O₅)8-10Τριπλό Υπερφωσφορικό (0-46-0) ή DAP (18-46-0)
Κάλιο (K₂O)6-8Θειικό ή χλωριούχο κάλιο (0-0-50 ή 0-0-60)
Θείο (S)2-3Θειική αμμωνία (21-0-0-24S)
Ψευδάργυρος (Zn)0,5-1Θειικός ψευδάργυρος (ZnSO₄)

Τρόπος Εφαρμογής:

  • Ενσωμάτωση στο έδαφος: Διασκορπισμός και φρεζάρισμα πριν τη σπορά για ομοιόμορφη κατανομή.

  • Γραμμική εφαρμογή: Τοποθέτηση λιπάσματος σε γραμμές κοντά στον σπόρο (banding) για άμεση πρόσβαση στις ρίζες.

Επιφανειακή Λίπανση
Πραγματοποιείται σε μεταγενέστερα στάδια ανάπτυξης για κάλυψη αυξημένων αναγκών σε άζωτο και άλλα θρεπτικά στοιχεία.

Στόχοι της Επιφανειακής Λίπανσης:

  • Ενίσχυση ανάπτυξης βλαστών στο στάδιο του αδελφώματος.

  • Διατήρηση ανάπτυξης κατά το γέμισμα των κόκκων.

  • Εξασφάλιση υψηλής ποιότητας και απόδοσης κόκκων.

Προτεινόμενες Δόσεις για Επιφανειακή Λίπανση:

Στάδιο ΑνάπτυξηςΘρεπτικό ΣτοιχείοΔόση (κιλά/στρέμμα)Μορφή Λιπάσματος
Αδέλφωμα (Tillering)Άζωτο (N)7-10Νιτρική αμμωνία (34-0-0) ή ουρία (46-0-0)
Επιμήκυνση ΒλαστούΆζωτο (N)6-8Θειική αμμωνία (21-0-0)
Γέμισμα ΚόκκωνΆζωτο (N)4-6Νιτρικό ασβέστιο (15,5-0-0)
Μικροθρεπτικά (Zn, S)Ανάλογα με ανάγκες0,5-1Υδατοδιαλυτά λιπάσματα (διαφυλλική θρέψη)

Τρόπος Εφαρμογής Επιφανειακής Λίπανσης:

  • Διασκορπισμός (Broadcasting): Κατάλληλο για μεγάλες εκτάσεις και γρήγορης δράσης λιπάσματα.

  • Ριζοπότισμα (Fertigation): Εφαρμογή υδατοδιαλυτών λιπασμάτων μέσω συστήματος άρδευσης για στοχευμένη θρέψη.

  • Διαφυλλική θρέψη (Foliar feeding): Ψεκασμοί μακρο- και μικροθρεπτικών για διόρθωση ελλείψεων στα κρίσιμα στάδια.

Πρώτη εφαρμογή (Βασική λίπανση):
Κατά τη σπορά για ενίσχυση ριζοβολίας και πρώτης ανάπτυξης.

Δεύτερη εφαρμογή (Αδέλφωμα):
Κατά το στάδιο αδελφώματος για στήριξη παραγωγής βλαστών.

Τρίτη εφαρμογή (Επιμήκυνση βλαστού):
Προώθηση ανθοφορίας και ανάπτυξης κόκκων.

Τέταρτη εφαρμογή (Διαφυλλική θρέψη):
Συμπληρωματικές εφαρμογές ιχνοστοιχείων στα κρίσιμα στάδια άνθησης και γέμισης.

A successful fertilization program:

Ensures high yield and quality grain characteristics.
Minimizes environmental impacts through controlled applications.
Is based on scientific data, such as soil analysis, for dose customization.
Adapts to the growth stages of wheat for optimal nutrient utilization.

The cultivation of wheat requires different nutrients at each stage of its development. Understanding these needs allows for rational fertilizer management, ensuring high yields and quality production.

Objectives:

Enhance vegetative growth and root system development.
Create a strong foundation for future growth.

Nutritional Requirements:

Phosphorus (P):
Promotes root establishment and rapid root growth.

Potassium (K):
Improves cold tolerance and increases cell resilience.

Sulfur (S):
Supports protein synthesis during early growth stages.
Requirements: 2–3 kg/acre.

Objectives:

Enhance tiller (shoot) multiplication.
Maintain plant vitality and growth.

Nutritional Requirements:

Nitrogen (N):
Key factor for tiller formation.

Magnesium (Mg):
Supports photosynthesis and leaf development.
Requirements: 2–3 kg/acre.

Zinc (Zn):
Improves cell development and growth hormone production.
Requirements: 0.5–1 kg/acre.

Objectives:

Maintain growth and strengthen the vegetative tissue.
Prepare for flowering and grain formation.

Nutritional Requirements:

Nitrogen (N):
Promotes vegetative growth.

Potassium (K):
Enhances mechanical support of stems, reducing lodging.

Boron (B):
Aids sugar transport and regulates flowering.
Requirements: 0.3–0.5 kg/acre via foliar feeding.

Objectives:

Ensure proper fertilization and initial grain development.
Maintain leaf function for continuous photosynthesis.

Nutritional Requirements:

Nitrogen (N):
Supports grain growth and increases protein content.

Sulfur (S):
Enhances amino acid and protein synthesis.

Copper (Cu):
Improves pollination and protects against oxidative stress.
Requirements: 0.2–0.3 kg/acre.

Objectives:

Improve grain weight and quality.
Facilitate the transport of carbohydrates and proteins to the grains.

Nutritional Requirements:

Nitrogen (N):
Contributes to protein synthesis.

Zinc (Zn):
Protects leaves from premature aging.
Requirements: 0.5–0.8 kg/acre via foliar feeding.

Objectives:

Stabilize the grains and reduce moisture.
Prepare for harvest.

Nutritional Requirements:

No additional fertilizer applications required.

Soil analysis is the basis for rational fertilisation management. It provides accurate information on soil fertility, available nutrients and the need to modify soil characteristics. Soil analysis is the basis for rational fertilisation management. It provides accurate information on soil fertility, available nutrients and soil amendment needs.

Accurate Deficiency Diagnosis:
Identifies deficiencies in macronutrients (N, P, K), secondary nutrients (S, Mg, Ca), and micronutrients (Zn, Fe, Mn).

Fertilizer Dose Adjustment:
Determines the necessary fertilizer quantities, reducing costs and avoiding nutrient wastage.

Yield Improvement:
Enhances plant growth and ensures higher grain production.

Environmental Protection:
Prevents water pollution caused by nitrate and phosphate runoff.

1. Soil Sampling:
Timing: 1–2 months before sowing to allow sufficient time for result interpretation.
Sampling Depth: 0–30 cm (surface layer) for most nutrients.
Number of Sampling Points: 10–15 points per 10 stremmata (1,000 m² each) for a representative sample.
Sample Mixing: Combine samples to create a composite sample.
Collection Method: Use soil auger or spade.
Handling: Place samples in clean bags and send to the laboratory.

2. Laboratory Analyses:
Analyses determine:

Soil pH:
Ideal range: 6.0–7.5.
Affects nutrient availability.

Electrical Conductivity (EC):
Estimates salinity; ideally less than 1.5 dS/m.

Organic Matter (%):
Indicates biological activity and soil structure.
Target: >2% for fertile soils.

Nutrient Content:

  • Nitrogen (N): Nitrate (NO₃⁻) and ammonium (NH₄⁺).

  • Phosphorus (P): Available phosphorus by Olsen method; ideally >15 ppm.

  • Potassium (K): Exchangeable potassium; ideally >200 ppm.

  • Secondary and micronutrients: Calcium (Ca), Magnesium (Mg), Sulfur (S), Zinc (Zn), Iron (Fe), Manganese (Mn), Copper (Cu), Boron (B).

Based on Soil Analysis Results:

Nutrient Sufficiency or Deficiency:
The soil nutrient supply level is determined for each element (low, medium, high).
Reference tables define additional fertilization needs.

Fertilizer Recommendations:
Basic application: Replenish deficiencies before sowing.
Top dressing: Supplementary needs during plant growth.

Adjustments Based on pH:
Acidic soils (<6.0): Add lime (CaCO₃) to raise pH.
Alkaline soils (>7.5): Add gypsum (CaSO₄) or organic acids to lower pH.

Nutrient Ratios:
Balanced N:P:K ratios such as 2:1:1 or 2:1:2 promote healthy growth.
Imbalances can reduce uptake of other nutrients (e.g., excess phosphorus inhibits zinc uptake).

The effectiveness of fertilization depends not only on the quality and composition of the fertilizers but also on the way they are applied. Correct techniques ensure optimal nutrient uptake by plants, reduce losses due to leaching or evaporation, minimise environmental impacts and significantly reduce fertilisation costs.Fertilisation efficiency depends not only on the quality and composition of fertilisers but also on how they are applied. Proper techniques ensure optimal nutrient uptake by plants, reduce losses due to leaching or aeration, minimise environmental impacts and significantly reduce fertilisation costs.

Broadcasting:
Uniform spreading of fertilizers on the soil surface, either before sowing (base fertilization) or after germination (top dressing).
Used mainly for large areas and application of macronutrients (N, P, K).
Advantages:

  • Fast application over large areas.

  • Easily combined with basic soil preparation.
    Disadvantages:

  • Reduced effectiveness for phosphorus (P) due to its low mobility in soil.

  • Increased risk of losses by leaching or volatilization.

Incorporation:
Fertilizer is mixed into the soil by plowing or tilling to reduce losses and improve uptake.
Suitable for phosphate and potassium fertilizers that need to be placed near roots.
Advantages:

  • Limits losses from leaching.

  • Enhances root access to nutrients.
    Disadvantages:

  • Higher cost and time due to extra operations.

Banding:
Fertilizer is placed in lines near seeds or plant roots.
Suitable for phosphorus and potassium, which need proximity to roots.
Advantages:

  • Reduces fertilizer-soil contact, preventing losses.

  • Improves plant nutrient uptake.
    Disadvantages:

  • Requires precise equipment.

  • Can cause root burns if improperly applied.

Description: Application of water-soluble fertilizers through the irrigation system.

Usage:
Suitable for crops with drip or subsurface irrigation systems.
Mainly used for nitrogen, potassium, and micronutrients.

Advantages:

  • Uniform distribution of nutrients.

  • Immediate availability to plants.

  • Reduced losses due to leaching and evaporation.

  • Flexibility for rapid correction of deficiencies during growth.

Disadvantages:

  • High initial cost for equipment installation.

  • Limited use in fields without modern irrigation systems.

Description: Application of dissolved nutrients directly onto plant foliage via spraying.

Usage:
Ideal for micronutrients (Zn, Mn, Cu, Fe, B).
Useful for rapid correction of deficiencies during the growing season.

Advantages:

  • Fast absorption through the foliage.

  • Requires small amounts of fertilizer.

  • Can be combined with plant protection products.

Disadvantages:

  • Limited duration of effect – requires repeated applications.

  • Risk of leaf burn at high temperatures or improper dilution.

Περιγραφή: Χρήση λιπασμάτων με αναστολείς ουρεάσης ή νιτροποίησης για σταδιακή αποδέσμευση των θρεπτικών στοιχείων.

Χρήση:
Κατάλληλη για βασική λίπανση σε περιοχές με περιορισμένη δυνατότητα επιφανειακών εφαρμογών.

Πλεονεκτήματα:

  • Μειώνει τις απώλειες μέσω έκπλυσης.

  • Εξασφαλίζει μακροχρόνια παροχή θρεπτικών.

  • Μειώνει τις απαιτήσεις για πολλαπλές εφαρμογές.

  • Μεγάλη εξοικονόμηση σε έξοδα.

  • Αύξηση παραγωγής και κερδών.

Βασική Λίπανση (Σπορά):
Εφαρμογή φωσφόρου (P) και καλίου (K) όπου απαιτείται, για γρήγορη ανάπτυξη ριζών και αντοχή στο ψύχος.

Επιφανειακή Λίπανση (Ανάπτυξη):
Άζωτο (N) σε στάδια αδελφώματος και άνθισης για ενίσχυση της βλαστικής ανάπτυξης και του γεμίσματος των κόκκων.

Διαφυλλική θρέψη:
Διορθωτικές εφαρμογές μικροθρεπτικών σε κρίσιμες φάσεις (π.χ. άνθιση, γέμισμα κόκκων).

Υγρασία:
Σε ξηρές περιόδους, προτιμάται η υδρολίπανση για στοχευμένη παροχή θρεπτικών.

Βροχοπτώσεις:
Αποφυγή εφαρμογής νιτρικών λιπασμάτων πριν από ισχυρές βροχές για μείωση απωλειών λόγω έκπλυσης.

Θερμοκρασία:
Σε υψηλές θερμοκρασίες, περιορίζεται η διαφυλλική θρέψη για την αποφυγή εγκαυμάτων.

Σταθεροποιημένα Λιπάσματα:
Περιέχουν αναστολείς νιτροποίησης και ουρεάσης για μείωση της έκπλυσης του αζώτου.

Υγρά & Κρυσταλλικά Λιπάσματα (Υδρολίπανση):
Χρησιμοποιούνται σε συνδυασμό με συστήματα άρδευσης για στοχευμένη λίπανση.

Προβλήματα από Υπερβολική Λίπανση:
Έκπλυση νιτρικών, ρύπανση υδάτων και επιβάρυνση του περιβάλλοντος.
Καταστολή ανάπτυξης ριζών και αύξηση της ευαισθησίας σε ασθένειες.

Στρατηγικές Μείωσης Κινδύνου:
Ανάλυση εδάφους για προσαρμογή των δόσεων.
Χωρισμός των εφαρμογών σε πολλαπλές δόσεις (split application).

Integrated Nutrient Management:
Combination of inorganic fertilizers with organic matter (compost, manure).

Crop Residue Recycling:
Returning plant residues to the soil to enrich organic matter.

Water Resource Protection:
Use of buffer zones near water bodies to reduce nutrient runoff.

Investment in Soil Analysis:
Cost savings through targeted fertilizer applications.

Purchase of Certified Fertilizers:
Avoidance of cheap products with questionable effectiveness.

Combined Applications:
Use of foliar feeding and fertigation where needed to maximize yield.

Soil Analysis as a Starting Point:
Determination of nutrient needs based on analysis results.
Targeted application to avoid over-fertilization and economic loss.

Appropriate Nutrients for Each Growth Stage:
Base fertilization: Supply of phosphorus (P) and potassium (K) to support root development.
Top dressing: Application of nitrogen (N) during tillering and flowering for maximum growth.
Foliar feeding: Rapid correction of micronutrient deficiencies at critical stages (e.g., flowering, grain filling).

Adaptation to Climatic and Soil Conditions:
Split fertilizer applications in regions with heavy rainfall.
Use of stabilized fertilizers to reduce losses.

Modern Application Techniques:
Fertigation: Utilizing irrigation systems for targeted nutrient delivery.
Foliar feeding: Application of micronutrients at critical growth stages.
Banding: Effective placement of phosphorus and potassium near the roots.

Environmental Protection and Sustainability:
Rational fertilizer management to prevent water pollution (nitrates).
Use of organic matter and recycling of crop residues to improve soil fertility.

Step 1 – Soil Analysis:
Plan fertilization based on soil test results.
Check pH, organic matter, and nutrient levels.

Step 2 – Fertilizer Selection:
Use certified high-quality fertilizers.
Prefer blended fertilizers and products with micronutrients.

Step 3 – Proper Timing and Application:
Base fertilization at sowing for initial root development.
Top-dress nitrogen during critical stages (tillering, grain filling).
Supplement with foliar micronutrient applications during deficiency periods.

Step 4 – Monitoring:
Regularly monitor plants to detect deficiencies.
Adjust fertilization program based on crop growth progress.

5. Irrigation and Water Management

Effective water management is a critical factor for the growth and productivity of wheat. Although wheat is considered drought tolerant, adequate and strategic irrigation at critical growth stages can significantly increase yields and improve grain quality.Effective water management is a critical factor in wheat growth and productivity. Although wheat is considered drought tolerant, adequate and strategic irrigation at critical growth stages can significantly increase yields and improve grain quality.

Here’s the table translated into English, keeping the format clear:

Growth StageCritical Water PeriodPercentage of Total Requirement
Sowing and GerminationCreating a moist environment10-15%
TilleringDevelopment of new shoots20-25%
Stem ElongationPromotion of vegetative growth20-25%
FloweringEnhancement of fertilization25-30%
Grain Filling and MaturityTransfer of nutrients to the grains10-15%

 

Soil Moisture:
Use soil sensors to measure moisture at different depths.
Ideal moisture: 60-80% of field capacity.

Climatic Conditions:
Forecast rainfall and temperatures to plan irrigation.
Avoid irrigation before heavy rainfall.

Plant Growth Stage:
Focus on critical stages such as tillering and flowering.

Soil Type:
Sandy soils require more frequent and smaller irrigation amounts.
Clay soils retain more water but require caution to avoid excessive moisture.

Water Saving Strategies:
Adoption of drip or sprinkler irrigation systems to minimize losses.
Collection and storage of rainwater for use during drought periods.

Use of Technology:
Installation of moisture sensors and smart irrigation scheduling systems.
Monitoring and data analysis using software tools.

Combination with Fertigation:
Supplying nutrients through irrigation to enhance efficiency.

6. Plant protection

Plant protection is a key part of wheat crop management, ensuring healthy plant growth and maximum yield. It includes the control of weeds, pests and diseases.

Τα ζιζάνια ανταγωνίζονται το σιτάρι για νερό, θρεπτικά στοιχεία, φως και χώρο, μειώνοντας δραστικά την απόδοση.

  1. Πλατύφυλλα (Δικότυλα):
  • Π.χ. Γαϊδουράγκαθο (Cirsium arvense), Μαργαρίτα (Anthemis spp.).
  1. Στενόφυλλα (Μονοκότυλα):
  • Π.χ. Αγρόπυρο (Elymus repens), Αλεπονουρά (Avena fatua).

Καλλιεργητικές Πρακτικές:

  • Εναλλαγή καλλιεργειών για τη μείωση του πληθυσμού ζιζανίων.
  • Καλή προετοιμασία εδάφους και χρήση καθαρού σπόρου.
  1. Χημική Ζιζανιοκτονία:
  • Προφυτρωτικά Ζιζανιοκτόνα (Pre-emergence):
    • Εφαρμόζονται πριν από τη βλάστηση των ζιζανίων.
  • Μεταφυτρωτικά Ζιζανιοκτόνα (Post-emergence):
    • Εφαρμόζονται μετά τη βλάστηση, σε αναπτυγμένα ζιζάνια.
  1. Μηχανική Καταπολέμηση:
  • Οργώματα και μηχανική απομάκρυνση σε μικρές εκτάσεις.
  1. Αφίδες (Aphididae):
  • Προκαλούν μείωση της φωτοσύνθεσης και μεταφέρουν ιώσεις, όπως τον ιό του κίτρινου νάνου κριθαριού (BYDV).
  1. Τζιτζικάκια (Cicadellidae):
  • Μεταδίδουν παθογόνους οργανισμούς (φυτοπλάσματα).
  1. Θρίπες (Thripidae):
  • Καταστρέφουν τον ιστό των φύλλων, επηρεάζοντας την ανάπτυξη.
  1. Σιδηροσκώληκες (Agriotes spp.):
  • Προσβάλλουν το ριζικό σύστημα προκαλώντας μειωμένη ανάπτυξη.
  1. Βιολογικός Έλεγχος:
  • Εισαγωγή φυσικών εχθρών (π.χ. πασχαλίτσες για αφίδες).
  1. Χημική Προστασία:
  • Εφαρμογή εντομοκτόνων σε συνδυασμό με παρακολούθηση πληθυσμών.
  1. Παγίδες Παρακολούθησης:
  • Χρήση κολλητικών παγίδων για έγκαιρη ανίχνευση εχθρών.
  1. Καλλιεργητικές Τεχνικές:
  • Καθαρισμός υπολειμμάτων καλλιεργειών που φιλοξενούν έντομα.
  1. Σκωρίαση (Puccinia spp.):
  • Προκαλεί πορτοκαλί ή καφέ φλύκταινες στα φύλλα και μειώνει τη φωτοσύνθεση.
  1. Ωίδιο (Blumeria graminis):
  • Δημιουργεί λευκή χνοώδη επικάλυψη στα φύλλα.
  1. Φουζάριο (Fusarium spp.):
  • Προκαλεί σήψη στη βάση των στελεχών και μόλυνση των κόκκων.
  1. Σήψη Ριζών (Pythium spp., Rhizoctonia spp.):
  • Προκαλεί σάπισμα των ριζών και μείωση της ανάπτυξης.

7. Harvesting and Storage

The harvesting and storage of the wheat are the last but crucial stages of the production process. Proper management of these stages ensures that the quality and quantity of production is maintained, minimising losses.

Harvesting takes place when the wheat reaches the stage of physiological maturity, meaning:

  • The moisture content of the grains is 12-15%.

  • The grains have acquired their characteristic hardness and color.

  • The stems have dried out and become brittle.

Early Harvest:

  • High moisture content in the grains.

  • Increased risk of mold and fermentation during storage.

Late Harvest:

  • Losses due to grain shattering and dropping.

  • Increased risk of insect infestations and fungal infections.

Removal of Foreign Matter (straw, dust, sand) using cleaning machines.
Sorting of grains based on size and weight to ensure uniformity.

Required when moisture exceeds 14%.
Drying Techniques:
Natural Drying: Spreading the wheat in thin layers to dry under the sun (no longer recommended).
Artificial Drying: Use of hot air dryers or drying machines for controlled moisture removal.
Target moisture: 12-13% for safe storage without fungal growth.

Storage Temperature:
Ideally below 20°C to control insects and fungi.

Storage Humidity:
Maintain levels below 65% relative humidity (RH) to prevent mold growth.

Ventilation:
Regular ventilation of storage areas to avoid condensation of moisture.

Silos:
Used for large quantities, providing protection against moisture and pests.

Big Bags:
Suitable for smaller quantities and easy transport.